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Abstract
In this paper, we study invariant Finsler metrics on homogeneous manifolds.
We first give an algebraic description of these metrics and obtain a necessary
and sufficient condition for a homogeneous manifold to have invariant Finsler
metrics. As a special case, we study bi-invariant Finsler metrics on Lie
groups and obtain a necessary and sufficient condition for a Lie group to
have bi-invariant Finsler metrics. Finally, we provide some conditions for a
homogeneous manifold to admit invariant non-Riemannian Finsler metrics and
present some interesting examples.

PACS numbers: 02.40.Ky, 02.40.Sf

Introduction

The study of Finsler spaces has important significance in physics. In [1], the authors single out
four aspects of the contexts in which the integral

∫ b

a
F (x, y) of a Finsler metric F(x, y) arises,

three of them being related to physics. Take optics for instance. In an anisotropic medium,
the speed of light depends on its direction of travel. At each location x, visualize y as an arrow
that emanates from x. Measure the time light takes to travel from x to the tip of y, and call the
result F(x, y). Then

∫ b

a
F (x, y) represents the total time light takes to traverse a given path in

this medium (cf also [2]). Meanwhile, some authors also pointed out that Einstein’s general
relativity theory can be described at a more accurate level using Finsler geometry instead of
Riemannian geometry (cf [3]).

However, it is generically very difficult to construct an explicit non-Riemannian Finsler
space, except for some trivial examples, such as Minkowski or locally Minkowski spaces.
Therefore, it is very important to find an effective way to construct explicit examples of
Finsler spaces. This paper will present an algebraic method to create homogeneous Finsler
spaces.
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Let G be a Lie group, H be a closed subgroup of G. The coset space G/H has a unique
smooth (analytic) structure such that G is a Lie transformation group of G/H . It is called
reductive if there exists a subspace m of the Lie algebra g = Lie G such that

g = h+̇m (direct sum of subspaces),

where h = Lie H and Ad(h)m ⊂ m,∀h ∈ H .
The study of invariant structures on reductive coset spaces is an important problem in

geometry. Nomizu’s research on the properties of invariant Riemannian metrics on G/H

obtained many interesting and significant results. He computed the connections of these
metrics and obtained the formula for geodesics and curvatures. His study created many
significant examples of Riemannian manifolds which have many special properties (cf [4]).

Therefore it is important to study invariant Finsler metrics on homogeneous manifolds,
especially reductive homogeneous manifolds. In this paper, we first give an algebraic
description of these structures. We first give the definition of Minkowski Lie pairs
(definition 1.1) and show that an invariant Finsler metric on G/H will induce a Minkowski
Lie pair and the converse is also true if H is connected. As a special case, we study bi-
invariant Finsler metrics on Lie groups and introduce the notion of Minkowski Lie algebras
(definition 2.1) to describe such structures. In section 3, we give a formula for the geodesics,
connections and flag curvatures in some special cases. Finally, we obtain some condition when
there exist invariant non-Riemannian Finsler metrics on G/H and present some examples.
The main result of this paper is the promotion of our previous paper on invariant Randers’
metrics on homogeneous Riemannian manifolds (cf [5]).

We must point out that the notions of Minkowski Lie pairs and Minkowski Lie algebras
seem to be the best combination of the related notions of functional analysis, Lie theory and
differential geometry. Hopefully, these new notions will play important roles in these related
fields, as well as in the applications of these subjects to physics.

1. Algebraic description

In this section, we give an algebraic description of the invariant Finsler metrics on
homogeneous manifolds (not necessarily reductive).

Proposition 1.1. Let G be a Lie group, H a closed subgroup of G, Lie G = g, Lie H = h.
Then there is a one-to-one correspondence between the G-invariant Finsler metric on G/H

and the Minkowski norm on the quotient space g/h satisfying

F(Adg/h(h)(x)) = F(x), ∀h ∈ H, x ∈ g/h,

where Adg/h is the representation of H on g/h induced by the adjoint representation of H
on g.

Proof. The proof is similar to the Riemannian case, so we omit it (cf [6]). �

Corollary 1.2. Let G/H be a reductive homogeneous manifold with the decomposition
g = h + m. Then there is a one-to-one correspondence between the G-invariant Finsler metric
on G/H and the Minkowski norm on m satisfying

F(Ad(h)x) = F(x), ∀h ∈ H, x ∈ m.

To state the next result, we first give a definition.
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Definition 1.1. Let g be a real Lie algebra, h be a subalgebra of g. If F is a Minkowski norm
on the quotient space g/h such that

gy(adg/h(x)u, v) + gy(u, adg/h(x)v) + 2Cy(adg/h(x)(y), u, v) = 0,

where y, u, v ∈ g/h, y �= 0, x ∈ h, gy is the (positive definite) inner product defined by F at y,
and Cy is the Cartan tensor of F (see [1] for the definitions). Then {g, h, F } (or simply {g, h})
is called a Minkowski Lie pair. In particular, if F is an Euclidean norm (this is the case if and
only if for any y, Cy = 0, cf [1]), then {g, h} is called an Euclidean Lie pair.

Theorem 1.3. Let G be a Lie group, H a closed subgroup of G, Lie G = g, Lie H = h.
Suppose there exists an invariant Finsler metric on the homogeneous manifold G/H . Then
there exists a Minkowski norm F on g/h such that {g, h, F } is a Minkowski Lie pair. On the
other hand, if H is connected and there exists a Minkowski norm on g/h such that {g, h, F } is
a Minkowski Lie pair, then there exists an invariant Finsler metric on G/H .

Proof. Let F be an invariant Finsler metric on G/H . Identifying g/h with To(G/H), where
o is the origin of G/H , we get a Minkowski norm on g/h (still denoted by F). Since F is
G-invariant, we have

F(Adg/h(h)(u)) = F(u), ∀h ∈ H, u ∈ g/h.

By the definition of gy , we have

gy(u, v) = gAdg/h(h)(y)(Adg/h(h)(u), Adg/h(h)(v)), ∀y, u, v ∈ g/h, y �= 0, h ∈ H.

For any x ∈ h, the one-parameter subgroup exp tx of H gives

gy(u, v) = gAdg/h(exp tx)(y)(Adg/h(exp tx)(u), Adg/h(exp tx)(v)), ∀t ∈ R.

Taking the derivative with respect to t, we obtain

gy(adg/h(x)u, v) + gy(u, adg/h(x)v) + 2Cy(adg/h(x)(y), u, v) = 0.

Therefore {g, h, F } is a Minkowski Lie pair. On the other hand, suppose F is a Minkowski
norm on g/h such that {g, h, F } is a Minkowski Lie pair. For any x ∈ h, y, u, v ∈ g/h, y �= 0,
consider the function

ψ(t) = gAdg/h(exp tx)(y)(Adg/h(exp tx)(u), Adg/h(exp tx)(v)).

Then for any t0 ∈ R we have

ψ ′(t0) = gAdg/h(exp t0x)(y)(adg/h(t0x)(Adg/h(exp t0x)(u)), Adg/h(exp t0x)(v))

+ gAdg/h(exp t0x)(y)(Adg/h(exp t0x)(u), adg/h(x)(Adg/h(exp t0x)(v)))

+ 2CAdg/h(exp t0x)(y)(adg/h(x)(Adg/h(exp t0x)(y)), u, v) = 0.

Therefore the function ψ is a constant, hence

gy(u, v) = gAdg/h(exp tx)(y)(Adg/h(exp tx)(u), Adg/h(exp tx)v), ∀t ∈ R.

Since H is connected, it is generated by elements of the form exp tx, x ∈ h, t ∈ R. Therefore
for any h ∈ H , we have

gy(u, v) = gAdg/h(h)(y)(Adg/h(h)(u), Adg/h(h)v).

To complete the proof, we need some computation. Let α1, α2, . . . , αn be a basis of the linear
space g/h. For u ∈ g/h − {0}, define gij (u) = gu(αi, αj ). Then we have the formula (cf [1])

F 2(u) =
n∑

i,j=1

gij (u)uiuj ,
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where u = ∑
uiαi . Now for any h ∈ H , we have

F 2(Adg/h(h)(u)) =
n∑

i,j=1

gij (Adg/h(h)(u))ūi ūj ,

where ūi(i = 1, 2, . . . , n) are defined by Adg/h(h)(u) = ∑
ūiαi . Let (mij )n×n be the matrix

of Adg/h(h) under the basis α1, . . . , αn, and (mij )n×n be the inverse of (mij ). Then

ūi =
n∑

k=1

miku
k.

Now

gij (Adg/h(h)(u)) = gAdg/h(h)(u)(αi, αj )

= gu((Adg/h(h))−1αi, (Adg/h(h))−1αj )

= gu

(
n∑

k=1

mikαk,

n∑
l=1

mjlαl

)
.

Therefore, taking into account the fact that gu is bilinear, we have

F 2(Adg/h(h)(u)) =
n∑

i,j=1

gu

(
n∑

k=1

mikαk,

n∑
l=1

mjlαl

) (
n∑

s=1

misu
s

)(
n∑

t=1

mjtu
t

)

=
n∑

i,j=1

gu(αi, αj )u
iuj .

Thus

F 2(Adg/h(h)(u)) = F 2(u).

Since F � 0, we have

F(Adg/h(h)(u)) = F(u).

Therefore, by the correspondence of proposition 1.1, we see that there exists an invariant
Finsler metric on G/H . �

To find a necessary and sufficient condition for G/H to have invariant Finsler metrics,
we first make an observation.

Theorem 1.4. Let G be a Lie group, H be a closed subgroup of G. Suppose there exists an
invariant Finsler metric on G/H . Then there exists an invariant Riemannian metric on G/H .

Proof. Let o = H be the origin of G/H . Consider the tangent space To(G/H) of G/H at o.
Then F defines a Minkowski norm on To(G/H) (still denoted by F). Define

Io = {x ∈ To(G/H)|F(x) = 1}.
Then the linear isotropic group Ad(H) = {Adg/h(h)|h ∈ H } leaves Io invariant. Let G1

be the subgroup of the general linear group GL(To(G/H)) consisting of the elements which
leave Io invariant. Then G1 is a compact Lie group (cf [6]) and Ad(H) is a subgroup of
G1. Therefore we can choose a G1-invariant inner product 〈 , 〉 on To(G/H). Then 〈 , 〉 is
Ad (H)-invariant. Therefore, using 〈 , 〉, we can define a G-invariant Riemannian metric g on
G/H (cf [6]). �

Using the well-known result on homogeneous Riemannian manifolds, we have
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Corollary 1.5. Let G be a Lie group, H be a closed subgroup of G, LieG = g, LieH = h.
Suppose there exists a G-invariant Finsler metric on G/H and h contains no non-zero ideal
of g. Then

• The Killing form Bh of h is semi-negative definite.
• The restriction of the Killing form of g to h is negative definite.

Now we can give a necessary and sufficient condition for a homogeneous manifold to
have invariant Finsler metrics.

Theorem 1.6. Let G be a Lie group, H be a closed subgroup of G such that G acts effectively
on G/H . Suppose the centralizer of H in G is non-discrete. Then there exists an invariant
Finsler metric on G/H if and only if there exists a Minkowski norm F on the Lie algebra g of
G such that

F(Ad(h)x) = F(x), ∀h ∈ H, x ∈ g.

Proof. The necessity is obvious, since if there exists an invariant Finsler metric on G/H , then
by theorem 1.4, there exists an invariant Riemannian metric on G/H . Therefore there exists
an inner product 〈 , 〉 on g such that (cf [6])

〈Ad(h)x, Ad(h)y〉 = 〈x, y〉, ∀h ∈ H, x, y ∈ g.

Define F(x) = √〈x, x〉. Then F satisfies our condition.
Now we prove the sufficiency. Suppose there exists a Minkowski norm on g satisfying

F(Ad(h)x) = F(x), h ∈ H, x ∈ g. Then by theorem 1.3, for any y ∈ g, y �= 0, we have

gy(Ad(h)(x), Ad(h)(y)) = 1

2

∂2

∂s∂t
F 2(y + sAd(h)x + tAd(h)y)|s=t=0

= gAd(h−1)y(x, y),

where h ∈ H, x, y ∈ g. Since CH(G) is non-discrete, we can find a non-zero y ∈ g such that
Ad(h)y = y,∀h ∈ H . Then the inner product gy satisfies

gy(Ad(h)x, Ad(h)y) = gy(x, y).

Let m be the orthogonal complement of h in g with respect to gy . Then we have

Ad(h)m ⊂ m,

and

F(Ad(h)x) = F(x), ∀h ∈ H, x ∈ m.

By corollary 1.2, there exist invariant Finsler metrics on G/H . �

Remark. The condition that the centralizer of H in G is non-discrete is indispensable and is
easy to satisfy.

2. Bi-invariant Finsler metrics on Lie groups

In this section, we consider invariant Finsler metrics on Lie groups. Let G be a Lie group. Then
we can write G = G/H with H = {e} and the action is the left translation of G. Therefore, by
proposition 1.1, for every Minkowski norm on g we can define a left invariant Finsler metric
on G. It is easy to see that there do exist non-Riemannian ones if dim G � 2. One can also
consider the right action. However, we are interested in bi-invariant Finsler metrics. For this
purpose, we consider the product group G × G and the subgroup

G∗ = {(g, g) ∈ G × G|g ∈ G}.
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Then G × G/G∗ is isomorphic to G under the mapping

(g1, g2)G
∗ 
→ g1g

−1
2 .

Under this isomorphism, a Finsler metric on G is bi-invariant if and only if the corresponding
Finsler metric on G×G/G∗ is G×G-invariant. Now G×G/G∗ can be viewed as a reductive
homogeneous manifold with the decomposition

(x, y) = (
1
2 (x + y), 1

2 (x + y)
)

+
(

1
2 (x − y),− 1

2 (x − y)
)
, x, y ∈ g.

Let h = {(x, x) ∈ g + g|x ∈ g}, m = {(x,−x)|x ∈ g}. Then by theorem 1.3 we have

Proposition 2.1. Let G be a connected Lie group. Then there is a one-to one correspondence
between the bi-invariant Finsler metric on G and the Minkowski norm F on m such that
{g + g, h, F } is a Minkowski Lie pair.

Since h is isomorphic to g as a Lie algebra under the mapping σ : (x, x) 
→ x and m is
linear isomorphic to g as a vector space under the mapping τ : (x,−x) 
→ x. We can restate
proposition 2.1 without introducing h and m. We first give a definition.

Definition 2.1. Let g be a real Lie algebra, F be a Minkowski norm on g. Then {g, F }
(or simply g) is called a Minkowski Lie algebra if the following condition is satisfied:

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v) = 0,

where y ∈ g − {0}, x, u, v ∈ g.

Proposition 2.2. Let g, h, m be as above. Then a Minkowski norm F on m makes {g + g, h, F }
a Minkowski Lie pair if and only if the induced (by τ ) Minkowski norm on g makes {g, F } a
Minkowski Lie algebra.

The proof is easy and we omit it.
In summarizing, we have proved the following:

Theorem 2.3. Let G be a connected Lie group. Then there exists a bi-invariant Finsler metric
on G if and only if there exists a Minkowski norm F on g such that {g, F } is a Minkowski
Lie algebra.

3. Geodesics and flag curvatures

In general, it is very difficult to describe explicitly the connections, geodesics and flag
curvatures of a Finsler metric. However, for some special invariant Finsler metrics on a
homogeneous manifold, we can obtain the explicit formula. We first recall a definition of
Kobayashi and Nomizu.

Definition 2.1 (cf [6]). Let G/H be a homogeneous manifold with an invariant (indefinite)
Riemannian metric g. Then G/H is called naturally reductive if there exists an Ad(H)-
invariant decomposition g = h + m such that

B1(x, [z, y]m) + B1([z, x]m, y) = 0, x, y, z ∈ m,

where B1 is the bilinear form on m induced by g and [ , ]m is the projection to m with respect
to the decomposition g = h + m. A homogeneous manifold G/H with an invariant Finsler
metric F is called naturally reductive if there exists an invariant Riemannian metric g on G/H

such that (G/H, g) is naturally reductive and the connections of g and F coincide.

Theorem 2.1. Let G/H be a homogeneous manifold with an invariant Finsler metric F such
that (G/H,F ) is naturally reductive with the decomposition g = h + m. Then
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(1) The geodesics of G/H through o are exp(tx) · o, x ∈ m.
(2) The curvature tensor of F is given

(R(x, y)z)o = 1
4 [x, [y, z]m]m − 1

4 [y, [x, z]m]m − 1
2 [[x, y]m, z]m − [[x, y]h, z],

where x, y, z ∈ m.
(3) Let y ∈ m and P be a plane in m containing y. Then the flag curvature of the flag (P, y)

is given by

K(P, y) = − 1
4gy([u, [v, u]m]m, v) − 1

2gy([[v, u]m, u]m, v) − gy([[v, u]h, u]m, v),

where u = y√
gy(y,y)

and u, v is an orthonormal basis of P with respect to gy .

Proof. Since G/H is naturally reductive, its connection is linear on M and has the same
geodesics as the canonical connection (cf [6]). Therefore (1) follows. The formula of
the connection of a naturally reductive homogeneous Riemannian manifold is given in [6].
Equation (3) is the direct consequence of (2) and the definition of flag curvature. �

As an explicit example, we consider the irreducible Riemannian globally symmetric
spaces. Let (G/H, g) be an irreducible Riemannian globally symmetric space with the
rank � 2. Then Szabó [6] proved that there exists invariant non-Riemannian Finsler metric on
G/H and each such metric is of Berwald type with the same connection as g. Since (G/H, g)

is naturally reductive, theorem 3.1 is applicable. Let g = h + m be the decomposition with
respect to the canonical involution of G/H . Then we have

[h,m] ⊂ m, [m,m] ⊂ h.

Therefore the geodesics through o are exp tx · o, x ∈ m. The curvature tensor at o is given by

Ro(u, v)w = −[[u, v], w].

And the flag curvature of the flag (P, y) is given by

K(P, y) = −gy([[u, v], u], v),

where the definition of u, v is similar to that of theorem 2.1.

4. Existence and examples

In the previous sections, we have investigated the general geometric properties of invariant
Finsler metric on G/H . The problem is whether there exists a non-Riemannian invariant
Finsler metric on a given homogeneous manifold. We will give some partial answers to this
problem. Finally, some explicit examples are given.

Theorem 4.1. Let G/H be a homogeneous manifold with H compact. Suppose the adjoint
representation of H on g/h is not irreducible. Then there exists an invariant non-Riemannian
Finsler metric on G/H . In particular, if G is a connected compact Lie group which is not
simple, then there exists a bi-invariant non-Riemannian Finsler metric on it.

Proof. We use a similar method to Szabó (cf [7]). Since H is compact, the representation of
H on g/h admits an invariant inner product 〈 , 〉. Therefore g/h has the decomposition

g/h = V0 + V1 + · · · + Vn,

where V0 is the subspace of fixed points of Ad(H) and Vi, i = 1, 2, . . . , n are irreducible
invariant subspaces. With this assumption, we have the following cases:
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(1) n � 1. In this case we construct a Minkowski norm F on g/h as follows:

F(X) =
√

|X|2 + s
√

|X0|2s + |X1|2s + · · · + |Xn|2s ,

where |·| denotes the length with respect to 〈 , 〉, X = X0 + · · · + Xn is the decomposition
of X corresponding to the above decomposition of g/h and s is an integer greater than 2.
Then it is easy to check that F satisfies the condition of corollary 1.2 and hence defines
an invariant Finsler metric on G/H which is non-Riemannian (cf [7]).

(2) n = 0. Then dim V0 � 2. In this case any invariant non-Euclidean Minkowski norm
F0 on V0 (if it exists) is invariant under Ad(H). Therefore there exists an invariant
non-Riemannian Finsler metric on G/H .

The last conclusion is the consequence of the first conclusion and theorem 2.1. �

The following result is due to Szabó ([7]).

Example 3.1. Let (G/H, g) be an irreducible Riemannian symmetric space. Then we have

(1) if the rank of G/H is 1, then there does not exist an invariant non-Riemannian Finsler
metric on it.

(2) If the rank of G/H is � 2, then there exists infinitely many different (that is, not isometric
to each other) invariant non-Riemannian Finsler metrics on G/H and each such metric
has the same connection as g.

By shifting the group H to a proper subgroup of it, we can find many more examples as
follows.

Example 3.2. Let G/H be a globally symmetric Riemannian manifold of dimension � 2.
Suppose

g = h + m

is the decomposition of g with respect to the involution of G/H at the origin o. Let m1 be any
non-zero proper subspace of m. Let

H1 = {h ∈ H |Ad(h)X = X, ∀X ∈ m1}.
Then by theorem 4.1, there exist invariant non-Riemannian Finsler metrics on G/H1.

As an explicit example, let us consider Sn = SO(n + 1)/SO(n), n � 2. We have
g = so(n + 1), h = so(n),

m =
{(

0 α

−αt 0

)∣∣∣∣α ∈ R
n

}
. (3.1)

For an integer q, 1 � q � n − 1, let mq be the subspace of m with

α =
(

αn−q

0

)
, αn−q ∈ R

n−q

in (3.1). The subgroup of SO(n) which leaves each point of mq fixed is SO(q) ↪→ SO(n) as

SO(q) =
{(

I 0
0 A

)∣∣∣∣A ∈ SO(q)

}
.
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Then by the above argument, there exist invariant non-Riemannian Finsler metrics on
M = SO(n + 1)/SO(q). In fact, using the method of theorem 4.1, we can write down
an explicit invariant Finsler metric on M. The tangent space To(M) can be identified with

V =



 β 0 α

0 0 γ

−αt −γ t 0




∣∣∣∣∣∣ β ∈ so(n − q), α ∈ R
n−q, γ ∈ R

q


 .

The fixed point set of SO(q) is

V0 =



 β 0 α

0 0 0
−αt 0 0




∣∣∣∣∣∣β ∈ so(n − q), α ∈ R
n−q


 .

And another irreducible invariant subspace of SO(q) is

V1 =



0 0 0

0 0 γ

0 −γ t 0




∣∣∣∣∣∣ γ ∈ R
q


 .

In V , we take the SO(q)-invariant inner product defined by

〈A1, A2〉 = Tr
(
At

1A2
)
, A1, A2 ∈ V.

Then for any integer s � 2, we can define an invariant non-Riemannian Finsler metric on
M by

Fo(A) =
√

Tr(βtβ) + 2αtα + 2γ tγ + s
√

(Tr(βtβ) + 2αtα)s + (2γ tγ )s,

where

A =

 β 0 α

0 0 γ

−αt −γ t 0


 ∈ V.

Note that

SO(n + 1)/SO(q) = (SO(n + 1)/SO(q) × SO(p)) × SO(p),

where p = n + 1 − q. Therefore M is a fibre bundle over the Grassmannian manifold Gp,q(R)

with fibres SO(p).
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